

US012045779B2

(12) United States Patent Garg et al.

(54) SYSTEM, METHOD, AND COMPUTER PROGRAM FOR AUTOMATICALLY REMOVING DATA FROM CANDIDATE PROFILES THAT MAY INFLUENCE BIAS

- (71) Applicant: **Eightfold AI Inc.**, Mountain View, CA (US)
- (72) Inventors: Ashutosh Garg, Mountain View, CA (US); Varun Kacholia, Mountain View, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 282 days.
- (21) Appl. No.: 17/319,524
- (22) Filed: May 13, 2021
- (65) Prior Publication Data US 2021/0264373 A1 Aug. 26, 2021

Related U.S. Application Data

- (63) Continuation-in-part of application No. 17/033.575. filed on Sep. 25, 2020, now Pat. No. 11,030,404, which is a continuation of application No. PCT/US2020/012317, filed on Jan. 6, 2020, application No. 17/319,524 is a continuation of application No. 16/209.834. filed on Dec. 4, 2018, now Pat. No. 11,030,583.
- (51) Int. CI.

 G06Q 10/00 (2023.01)

 G06F 40/295 (2020.01)

 G06N 20/00 (2019.01)

 G06Q 10/0631 (2023.01)

 G06Q 10/1053 (2023.01)

(10) Patent No.: US 12,045,779 B2

(45) **Date of Patent:**

Jul. 23, 2024

(52) U.S. CI. CPC Gθ6Q 1θ/1θ53 (2013.01); Gθ6F 4θ/295 (2020.01): Gθ6N 2θ/θθ (2019.01); Gθ6Q 1θ/θ63112 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

7,472,097	B 1	12/2008	Scarborough et al.				
9,665,641	B1	5/2017	Zhang				
10,185,712	B2	1/2019	Gidney				
10,467,339	B1 *	11/2019	Shen G06F 40/247				
10,776,758	B1 *	9/2020	Benedict G06Q 50/01				
(Continued)							

OTHER PUBLICATIONS

Peck, Damien. (Victorian Government to remove job seeker details from resumes to improve diversity: The Victorian Government is reducing details on resumes for public service jobs to avoid discrimination for jobseekers. ABC Premium News [Sydney] May 20, 2016.) (Year: 2016).*

(Continued)

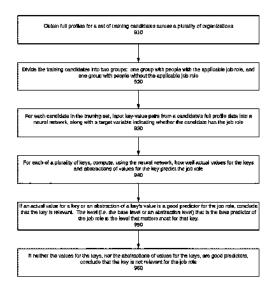
Primary Examiner — Gabrielle A McCormick (74) Attorney, Agent, or Firm — Zhong Law LLC

(57) ABSTRACT

A system and method relate to excluding biasing data from talent profiles, including identifying one or more classes of bias, obtaining a first talent profile, wherein the first talent profile comprises an identifier of a person, and a plurality of values characterizing aspects of the person, determining, from the plurality of values, a first value that is indicative of influences over at least one of the one or more classes of bias, and removing or substituting the first value in the first talent profile to generate a second talent profile.

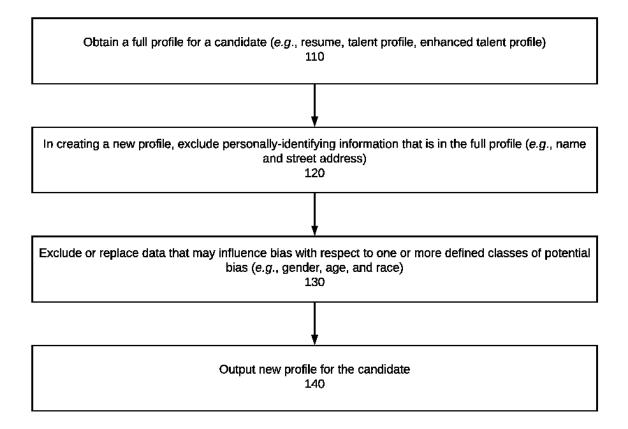
18 Claims, 10 Drawing Sheets

(DENTIFYING RELEVANT KEYS AND ABSTRACTION LEVELS FOR KEY-VALUE PAIRS USING A NEURAL METWORK

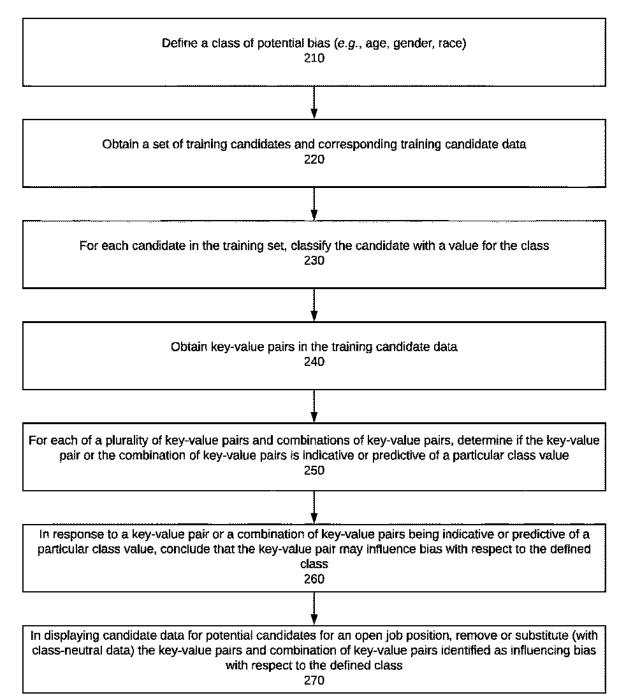


(56)	References Cited		2018/0039946 A1		Bolte et al.	
	U.S.	PATENT	DOCUMENTS	2018/0150484 A1 2018/0218330 A1 2018/0232751 A1	8/2018	Dupey et al. Choudhary et al. Terhark et al.
2005/0004905	A1	1/2005	Dresden	2018/0308061 A1		Jadda et al.
2005/0086186			Sullivan et al.	2018/0336501 A1		Le et al.
2005/0216295	ΛI	9/2005	Abrahamsohn	2018/0357557 A1		Williams et al.
2005/0261956	ΛI	11/2005	Kato	2018/0373691 A1		Alba et al.
2006/0235884	ΛI	10/2006	Pfenniger et al.	2019/0057356 A1*		Larsen G06V 40/28
2006/0271421	A1	11/2006	Steneker et al.	2019/0066056 A1		Gomez et al.
2007/0047802		3/2007		2019/0114593 A1		Champaneria
2007/0112585			Breiter et al.	2019/0164176 A1*		Pydynowski II04L 67/535
2009/0144075			Flinn et al.	2019/0197487 A1		Jersin et al.
2010/0100398	Al*	4/2010	Auker G06Q 50/01 705/4	2019/0205838 A1 2020/0007336 A1	1/2020	l'ang et al. Wengel
2010/0153149	ΛI	6/2010	Prigge et al.	2020/0065769 A1		Gupta et al.
2010/0153150	ΛI	6/2010	Prigge et al.	2020/0117582 A1		Srivastava et al. Bhotika et al.
2011/0055098	ΛI		Stewart	2020/0160050 A1	3/2020	Bhotika et al.
2011/0238591	ΛI^{*}	9/2011	Kerr G06Q 10/1053 705/321	OTI	IBR PO	BLICATIONS
2011/0276505	ΛI	11/2011	Schmitt			
2011/0276507	ΛI	11/2011	O'Malley	Pedreschi et al., "Discri	imination	-Aware Data Mining," Aug. 24-27,
2011/0313940	A1*	12/2011	Кент G06Q 10/1053 705/321	2008, KDD 08, Las Ve	gas, Nev	
2013/0096991	ΛI	4/2013	Gardner et al.			016), medium.com/SCustomerGlu,
2013/0137464	A1*	5/2013	Kramer H04W 4/021 455/456.3	2016, 5 pages.		
2013/0290208	ΛI	10/2013	Bonmassar et al.			Diversity 'Reboot'", SC Magazine
2014/0039991	A1	2/2014	Gates et al.	29:4: 26-29, 2018, Hay		
2014/0074738	A1*	3/2014	Thankappan G06Q 10/10 705/321	Revolution; Cutting Cos	sts, Turno	Hiring is in the Midst of a Tech- ver, Eliminating Bias, South Florida
2014/0122355	A1	5/2014	Hardike et al.	Sun-Sentinel, 2018, pp		
2014/0282586	A1	9/2014	Shear et al.			ology has Changed Recruitment—
2014/0330734	A1	11/2014	Sung et al.	For Better (and Worse), Cio Cxo Media, Inc., 2017, pp. 1-3.		
2015/0142711	ΛI		Pinckney et al.	Sarah Dobson, "Feds Try to Blank Out Bias", Canadian HR		
2015/0161567			Mondal et al.	Reporter 30, 9, HAB Press Limited, 2017, pp. 1-3.		
2015/0178682			Matthews et al.	David Hausman, "How	Congress	s Could Reduce Job Discrimination
2015/0244850			Rodriguez et al.	by Promoting Anonyn	nous Hiri	ng", Stanford Law Review 64.5,
2015/0309986			Bray et al.	2012, pp. 1343-1369. S	Stanford J	University, Stanford Law School.
2015/0317610			Rao et al.	Hardt et al. "Equality	of Oppo	ortunity in Supervised Learning."
2016/0012395		1/2016		arXiv:1610.02413v1, C	Oct. 7, 20	16, 22 pages.
2016/0034463			Brewer Wang et al.			ir Machine Learning," arXiv:1803.
2016/0034853			Wang et al.	04383v2, Apr. 7, 2018,		
2016/0055457			Mather et al.			 litigating Unintended Bias in Text
2016/0098686 2017/0061081			Younger Jagannathan et al.			ne 2018 AAAI/ACM Conf. on AI,
2017/0001081			Ignatyev G06Q 30/0631	Ethics, and Society, Fe		
			705/26.7	International Application	on No. P	CT/US2020/012317. International
2017/0243162			Gavrielides et al.	Search Report and Wri	iπen Opin	nion mailed Apr. 9, 2020, 8 pages.
2017/0344555			Yan et al.			
2017/0357945	ΛI	12/2017	Ashkenazi et al.	" cited by examiner		

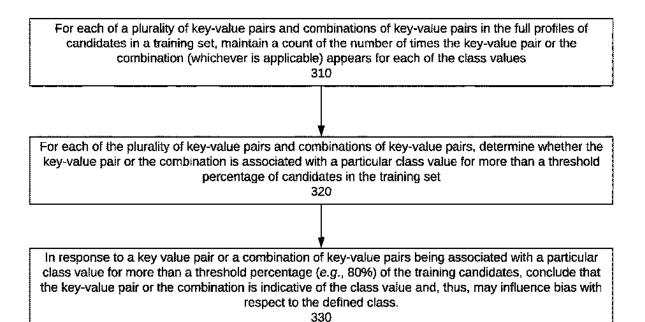
Creating "New Profile" for Candidate



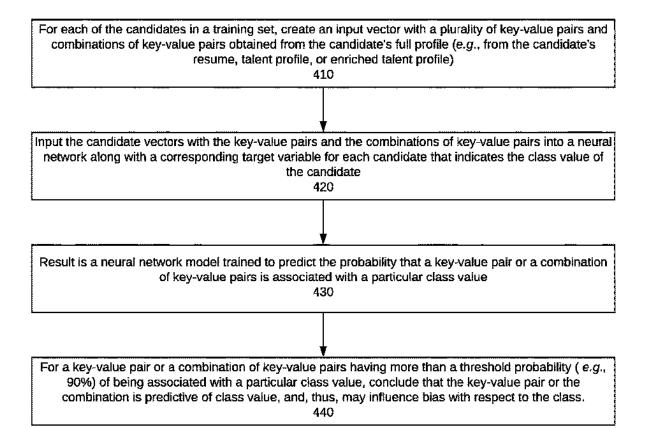
REMOVING CANDIDATE DATA THAT MAY INFLUENCE BIAS WITH RESPECT TO A DEFINED CLASS OF BIAS



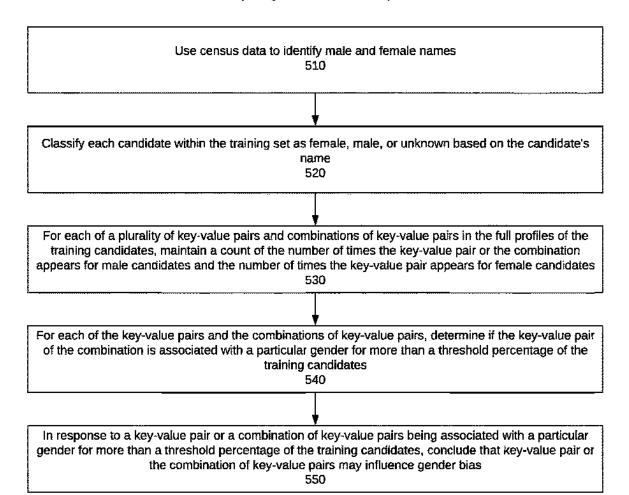
EXAMPLE METHOD FOR DETERMINING WHETHER A KEY-VALUE PAIR IS INDICATIVE OR PREDICTIVE OF A PARTICULAR CLASS VALUE



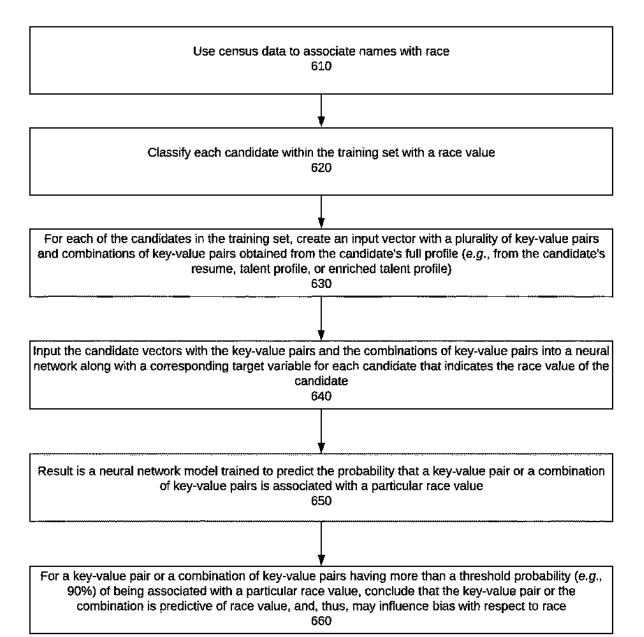
EXAMPLE MACHINE-LEARNING METHOD FOR DETERMINING WHETHER A KEY-VALUE PAIR IS INDICATIVE OR PREDICTIVE OF A PARTICULAR CLASS VALUE



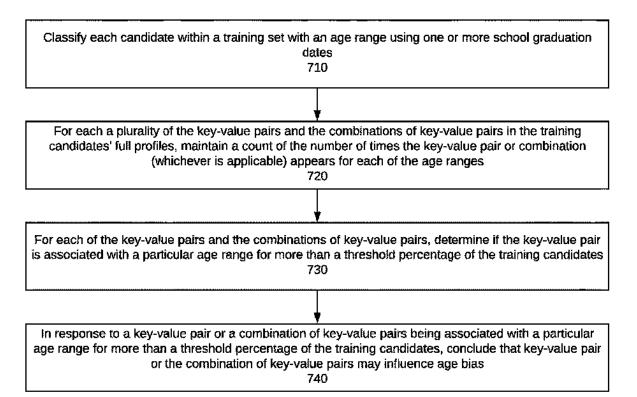
EXAMPLE OF METHOD FOR IDENTIFYING KEY-VALUE PAIRS THAT MAY INFLUENCE GENDER BIAS (Using Threshold Method)



EXAMPLE OF METHOD FOR IDENTIFYING KEY-VALUE PAIRS THAT MAY INFLUENCE RACE BIAS (Using Neural Network)

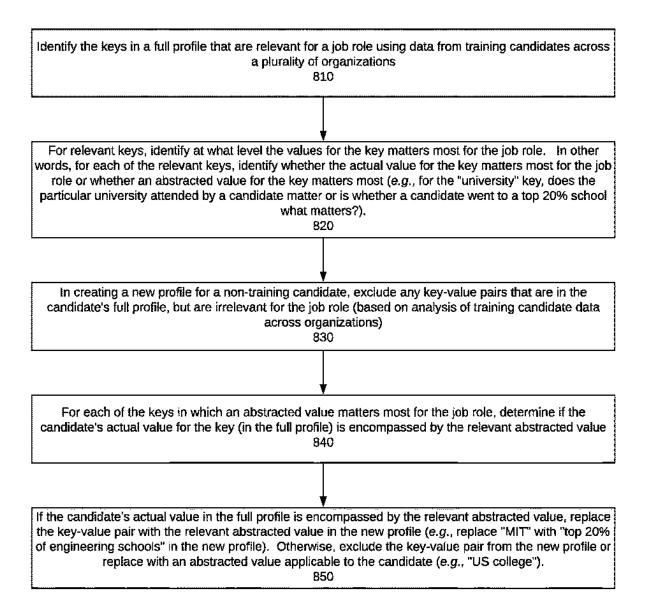


EXAMPLE OF METHOD FOR IDENTIFYING KEY-VALUE PAIRS THAT MAY INFLUENCE AGE BIAS (Using Threshold Method)

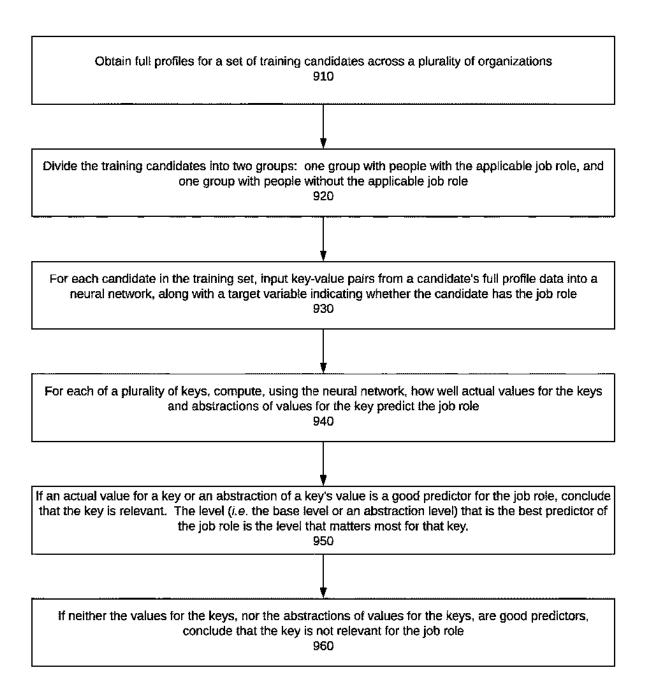


US 12,045,779 B2

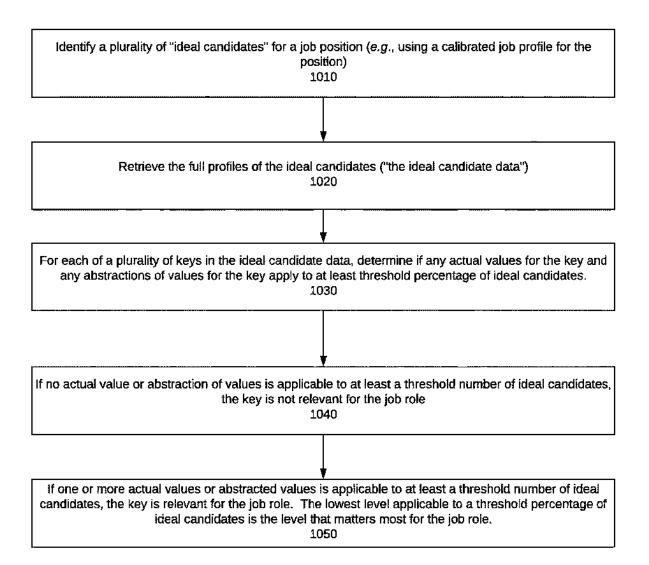
ABSTRACTING CANDIDATE DATA TO RELEVANT LEVELS



IDENTIFYING RELEVANT KEYS AND ABSTRACTION LEVELS FOR KEY-VALUE PAIRS USING A **NEURAL NETWORK**



IDENTIFYING RELEVANT KEYS AND ABSTRACTION LEVELS FOR KEY-VALUE PAIRS USING A **CALIBRATED JOB PROFILE**



SYSTEM, METHOD, AND COMPUTER PROGRAM FOR AUTOMATICALLY REMOVING DATA FROM CANDIDATE PROFILES THAT MAY INFLUENCE BIAS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/209,834 filed Dec. 4, 2018, and is a continuation-in-part of U.S. patent application Ser. No. 17/033,575 filed Sep. 25, 2020, which is a continuation of International Patent Application No. PCT/US2020/012317 filed Jan. 6, 2020. The contents of the above-mentioned applications are hereby incorporated by reference in their ¹⁵ entireties.

TECHNICAL FIELD

This invention relates generally to human resource applications, and more specifically to removing data from candidate profiles that may influence bias.

BACKGROUND

Many companies and organizations use various HR applications to identify candidates for open job positions. An example of a system that identifies candidates for job openings is described in U.S. patent application Ser. No. 16/121,401, filed on Sep. 4, 2018, and titled "System, 30 Method, and Computer Program for Automatically Predicting the Job Candidates Most Likely to be Hired and Successful in a Job," the contents of which are incorporated by reference herein. Such systems typically display a list of potential candidates and enable a user (e.g., an HR manager) 35 at the organization to view profiles for the potential candidates. The profiles may be resumes, talent profiles, or enhanced talent profiles as described in the incorporated U.S. patent application Ser. No. 16/121,401.

In reviewing candidate profiles, conscious or unconscious biases by reviewers at the organization may cause them to overlook candidates that are well qualified for a job position. A bias may be a type of bias that is generally known to organizations, such as those related to gender, race, or age. Reviewers may also have biases that are unknown to the 45 organization. For example, a reviewer may make assumptions about a candidate based on a hobby listed on the resume. For example, a reviewer looking for a salesperson with an outgoing personality and a "people person" may assume that someone who plays chess is an introvert, which 50 may or may not be true. In such case, if the candidate otherwise meets the qualifications for the job, it would be better to interview the candidate instead of dismissing the candidate based on his/her profile.

To reduce the likelihood of bias in the initial screening 55 process, it would be helpful to remove data from a candidate's profile that may influence bias. Therefore, there is demand for an HR application that not only identifies potential candidates for open job positions, but creates new profiles for the candidates that exclude data that may influence bias.

SUMMARY OF THE DISCLOSURE

The present disclosure describes a system, method, and 65 computer program for removing or replacing information in candidate profiles that may influence bias. The method is

2

performed by a computer system that identifies potential candidates for open job positions and displays profiles for the identified candidates ("the system").

In one embodiment, the system first creates or obtains a "full profile" for a candidate and then creates a "new profile" for the candidate that excludes or substitutes data in the full profile that may influence reviewer bias. The "new profiles" may be the profiles initially displayed to a user screening candidates for an open job position.

In one embodiment, the system excludes or substitutes the following types of information in creating the new profile: (1) data that personally identifies the candidate, such as the candidate's name, and (2) data that is indicative of gender, race, and/or age (or another defined class of bias). In one embodiment, a method for creating a profile for a job candidate that excludes data that may influence reviewer bias comprises the following steps:

defining a class of potential bias;

identifying key-value pairs in candidate data that may influence bias with respected to the defined class by performing the following:

obtaining a set of training candidates;

for each candidate in the set, classify the candidate with a value for the class;

obtain key-value pairs in the candidate data for the training set (the "training candidate data)

for each of a plurality of key-value pairs in the training candidate data,

determining if the key-value pair is indicative of a particular class value; and

in response to a key-value pair being indicative of a particular class value,

concluding that concluding that the key-value pair may influence bias with respect to the defined class:

obtaining a first profile for a non-training candidate, wherein the first profile includes the non-training candidate's name and one or more key-value pairs identified as influencing bias in the training candidate data; and

creating a second profile for the non-training candidate from the first profile by removing or substituting the non-training candidate's name and the key-value pair(s) identified as influencing bias.

In a further embodiment, the system may also exclude any information in the new profile that is not relevant to the job role for which the candidate is applying. In such embodiments, the system determines what data is relevant for the job for which the candidate is applying and, for data that is relevant, at what level it is relevant (i.e., at the base value or an abstracted level). The system then removes data from the profile that is not relevant for the job role and, where applicable, abstracts some of the remaining data to levels that are relevant for the job role.

BRIEF DESCRIPTION OF THE DRAWINGS

potential candidates for open job positions, but creates new profiles for the candidates that exclude data that may influence bias.

FIG. 1 is a flowchart that illustrates a method for creating a new profile for a candidate that excludes data that may influence bias according to one embodiment.

FIG. 2 is a flowchart that illustrates a method, according to one embodiment, for identifying candidate data that may influence bias with respect to a defined class of bias.

FIG. 3 is a flowchart illustrates a method, according to one embodiment, for determining whether a key-value pair is indicative of a particular class value.

3

FIG. 4 is a flowchart that illustrates a method, according to an alternate embodiment. for determining whether a key-value pair is indicative of a particular class value.

FIG. 5 is a flowchart that illustrates an example method for identifying key-value pairs that may influence gender ⁵ bias.

FIG. 6 is a flowchart that illustrates an example method for identifying key-value pairs that may influence race bias.

FIG. 7 is a flowchart that illustrates an example method for identifying key-value pairs that may influence age bias. ¹⁰

FIG. 8 is a flowchart that illustrates a method, according to one embodiment, for abstracting candidate data to relevant levels for a job role.

FIG. 9 is a flowchart that illustrates a method, according to one embodiment, for determining what keys in candidate ¹⁵ data are relevant for a job role, and, for keys that are relevant, at what level the key matters most.

FIG. 10 is a flowchart that illustrates a method, according to an alternate embodiment, for determining what keys in candidate data are relevant for a job role, and, for keys that ²⁰ are relevant, at what level the key matters most.

DETAILED DESCRIPTION

The present disclosure describes a system, method, and 25 computer program for removing or replacing information in candidate profiles that may influence bias. The method is performed by a computer system that identifies potential candidates for open job positions and displays profiles for the identified candidates ("the system"). An example of the 30 system is described in U.S. patent application Scr. No. 16/121,401 (incorporated herein above).

For each open job position in an organization, the system displays a list (typically ranked) of identified candidates for the job position. A user (e.g., an HR manager) can select any 35 of the candidate and see a profile associated with the candidate. In one embodiment, the initial profile viewed by the user is a "new profile" created by the system from a "full profile" for the candidate. The "full profile" may be the candidate's resume, talent profile, or enhanced talent profile 40 (e.g., the "enhanced talent profile" described in the US patent application Ser. No. 16/121.401, incorporated herein above). The new profile is based on the candidate's full profile, but excludes data that may influence bias. An organization may configure the system to enable the user to 45 see the full profile at a later point in the interviewing/ screening process. A method for creating the new profile is described below.

Creating a New Candidate Profile from a Candidate's Full Profile

FIG. 1 illustrates a method for creating a new profile for a candidate that excludes data that may influence bias. The system obtains a full profile for the candidate (step 110). For avoidance of doubt, the term "full profile" or "full candidate profile" herein means any profile (e.g., resume, talent profile, enhanced talent profile, etc.) for the candidate obtained or created by the system before data in the profile is removed or replaced in accordance with the methods described 60 bersin

In creating the new profile, the system excludes personally-identifiable information that is in the full profile, such as name and/or street address information (step 120). The system also excludes or replaces candidate data that may 65 influence bias with respect to one or more defined classes of bias (e.g., gender, race, or age) (step 130). This step is

4

described in more detail with respect to FIGS. 2-7. The system then outputs the new profile, which is displayed in a user interface for the system (step 140).

Identifying Data that May Influence Bias with Respect to a Defined Class of Bias

FIG. 2 illustrates a method for identifying data in full candidate profiles that may influence bias with respect to a defined class of bias. The system receives as an input a defined class of bias, such as race, gender, and age (step 210). The defined class may be inputted by a system administrator or a user of the system via a user interface.

The system obtains candidate data for set of training candidates, preferably from across a plurality of organizations and a variety of professions (step 220). The training candidate data includes their full candidate profiles (e.g., a resume, talent profile, or enhanced talent profile) and data that enables each of the candidates to be classified with a class value (e.g., name or school graduation date). The system may obtain the training candidate data from a talent repository managed by the system (or an organization/company) or from public data sources that store job-candidate/employment profiles. The system classifies each of the training candidates with a class value (e.g., male or female) (step 230).

The system obtains key-value pairs from the full candidate profiles of the training candidates (step 240), and for each of a plurality of key-values pairs and combinations of key-value pairs, the system determines if the key-value pair or combination of key-value pairs is indicative of a particular class value (step 250). In response to a key-value pair or a combination of key-value pairs being indicative of a particular class value, the system concludes that the keyvalue pair or combination of key-value pairs may influence bias with respect to the defined class (step 260). In creating a new profile for a candidate, the system removes or substitutes (with class-neutral data) the key-value pairs and combination of key-value pairs identified as influencing bias with respect to the defined class (step 270). "Neutral" data that serves as a substitute for key-value pairs may be an abstracted form of the key-value pair. For example, a particular US college may be replaced with an abstracted value of the college, such as "4-year US college."

2.1 Determining Whether a Key-Value Pair is Indicative of a Particular Class Value

FIG. 3 illustrates a method for determining whether a key-value pair is indicative of a particular class value. This method is referred to herein as the "threshold method" in order to distinguish it from the method of FIG. 3, which is referred to as the "machine learning method." For each of a plurality of key-value pairs and combinations of key-value pairs in the full profiles of the training candidates, the system maintains a count of the number of times the key-value pair or the combination of key-value pairs appears for each of the class values (step 310), and determines whether the keyvalue pair or the combination (whichever is applicable) is associated with a class value for more than a threshold percentage (e.g., 80%) of candidates in the training set (step 320). If a key-value pair or a combination of key-value pairs is associated with a particular class value for more than the threshold percentage of candidates, the system concludes the key-value pair or the combination of key value-pairs (which-

ever is applicable) is indicative of the class value and, thus, may influence bias with respect to the defined class (step

FIG. 4 illustrates an alternate method for determining whether a key-value pair is indicative of a particular class value. This method uses a neural network, such as a deep neural network, and, as stated above, is referred to herein as the "machine-learning method." For each of the candidates in the training set, the system creates an input vector for the candidate with a plurality of key-value pairs and combina- 10 tion of key-value pairs obtained from the training candidate's full profiles (step 410). The input vectors may include all the key-value pairs in the full profiles or just a subset of key-value pairs. To train a neural network, the system inputs the vectors for each of the training candidates into the neural 15 network, along with a corresponding target variable for each of the candidates that indicates the class value of the candidate (step 420). The result is a neural network that is trained to predict the probability that a key-value pair or combination of key-value pairs is associated with a particu- 20 lar class value (step 430). For a key-value pair or a combination of key-value pairs having more than a threshold probability (e.g., 90%) of being associated with a particular class value, the system concludes that the key-value pair or the combination of key-value pairs (whichever is applicable) 25 is indicative of class value, and, thus, may influence bias with respect to the class (step 440).

The methods of FIGS, 3 and 4 could be applied to just individual key-value pairs (and not combinations of keyvalue pairs).

2.2 Example Method for Identifying Key-Value Pairs that May Influence Gender Bias

FIG. 5 illustrates an example method for identifying 35 key-value pairs that may influence gender bias. This example uses the threshold method described above with respect to FIG. 3, but the machine learning method could be used instead. Census data is inputted or imported into the system, which analyzes the data to identify male and female 40 names (step 510). Specifically, names used for a threshold percentage (e.g., 90%) of one gender are classified as associated with that gender. The system uses this information to classify each candidate in the training set as female, male, or unknown based on the candidate's name (step 520). 45

For each of a plurality of key-value pairs and combinations of key-value pairs in the full profile of the training candidates, the system maintains a count of the number of times the key-value pair (or the combination) appears for male candidates and the number of times the key-value pair 50 (or the combination) appears for female candidates (step 530), and determines whether the key-value pair or the combination (whichever is applicable) is associated with a particular gender for more than a threshold percentage (e.g., 80%) of candidates in the training set (step 540). If a 55 and, thus, may influence age bias (step 740), key-value pair or a combination of key-value pairs is associated with a particular gender for more than the threshold percentage of candidates, the system concludes the keyvalue pair or the combination of key value-pairs (whichever is applicable) is indicative of the class value and, thus, may 60 influence gender bias (step 550).

2.3 Example Method for Identifying Key-Value Pairs that May Influence Race Bias

FIG. 6 illustrates an example method for identifying key-value pairs that may influence race bias. This example 6

uses the machine-learning method described above with respect to 14G. 4, but the threshold method could be used instead. Census data is inputted or imported into the system, which analyzes the data to associate names with races (step 610). Specifically, names used for a threshold percentage (e.g., 90%) of one race are classified as associated with that race value. The system uses this information to classify each candidate in the training set with a race value (which may include "unknown") based on the candidate's name (step 620).

For each of the training candidates, the system creates an input vector for the training candidate with a plurality of key-value pairs and combination of key-value pairs obtained from the training candidate's full profile (step 630). To train a neural network, the system inputs the vectors for each of the training candidates into the neural network, along with the candidate's race value (step 640). The result is a neural network that is trained to predict the probability that a key-value pair or a combination of key-value pairs is associated with a particular race value (step 650). For a keyvalue pair or a combination of key-value pairs having more than a threshold probability (e.g., 90%) of being associated with a particular race value, the system concludes that the key-value pair or the combination of key-value pairs (whichever is applicable) is indicative of race value, and, thus, may influence racial bias (step 660).

2.4 Example Method for Identifying Key-Value Pairs that May Influence Age Bias

FIG. 7 illustrates an example method for identifying key-value pairs that may influence age bias. This example uses the threshold method described above with respect to FIG. 4, but the machine learning method could be used instead. The system analyzes high school or college graduation dates, and uses these dates to classify each of the candidates in a training set with an age range value (e.g., 20-30 years old, 30-40 years old, etc.) (step 710). For example, in the year 2020, the system may classify someone that graduated from college in the year 2018, with a "20-30-year-old" age range.

For each of a plurality of key-value pairs and combinations of key-value pairs in the full profiles of the training candidates, the system maintains a count of the number of times the key-value pair (or the combination) appears for each of the age ranges (step 720), and determines whether the key-value pair or the combination (whichever is applicable) is associated with a particular age range for more than a threshold percentage (e.g., 80%) of candidates in the training set (step 730). If a key-value pair or a combination of key-value pairs is associated with a particular age range for more than the threshold percentage of candidates, the system concludes the key-value pair or the combination of key value-pairs (whichever is applicable) is indicative of age

Further Embodiments—Abstracting Candidate Data to Relevant Levels

In certain embodiments, creating a new profile for candidate also includes removing any data that is not relevant to the job role for which the candidate is applying. The methods describe above with respect to FIGS. 2-7 reduce the likelihood that a reviewer is influenced by a known type of bias, such as gender, race, or age, whereas abstracting candidate profiles to only what is relevant for a job also reduces the likelihood of a reviewer being influenced by

reviewer-specific biases that may be unknown to the organization. For example, a particular reviewer may make assumptions about a candidate based on a hobby listed by the candidate, and the candidate's hobbies may not be relevant for obtaining or succeeding at the job for which the 5 candidate is applying.

FIG. 8 illustrates a method for abstracting candidate data to relevant levels for a job role. The system identifies the keys (i.e., the fields) in a full candidate profile that are relevant for a job role using training candidate data, preferably from across a plurality of organizations (step 810). The training candidate data may be obtained from a talent repository maintained by the system or an organization, or from public data sources with employment profile data. Methods for performing this step are described with respect to FIGS. 9-10. If key-value pairs have already been eliminated or substituted in accordance with the method of FIG. 2. then this is performed for the remaining keys in the candidate's full profile.

For each of the relevant keys, the system identifies at what level the key matters most for the job role (step **820**). In ²⁰ other words, for each of the relevant keys, the system identifies whether the actual value for the key matters most or whether an abstracted value for a key matters most. For example, for the "university" key, does the particular university attended by a candidate matter or is whether a ²⁵ candidate went to a top 20% school what matters?

In creating the new profile for the candidate, the system excludes any key-value pairs that are in the full candidate profile but are irrelevant for the job role (step 830). For each of the relevant keys in which an abstracted value matters most for the job role, the system determines whether the candidate's actual value for the key is encompassed by the relevant abstracted value (step 840). For example, if what matters most for the "university" key is whether a candidate went to a top 20% school, then system determines whether the university attended by the candidate is a top 20% school. They system may use published or inputted university rankings to make this determination.

If the candidate's actual value in his/her full profile is encompassed by the relevant abstracted value, the system 40 replaces the key-value pair in the candidate's full profile with the relevant abstracted value in the new profile (step 850). For example, the system may replace "Massachusetts Institute of Technology" in a full profile with "top 20% of engineering schools" in the new profile. Otherwise, the 45 system either excludes the key-value pair from the new profile or replaces the key-value pair with an abstracted value relevant to the candidate in the new profile, depending on how the system is configured (also step 850). For example, if the candidate attended a 4-year college that is 50 not ranked in the top 20% of schools (according to the ranking(s) used by the system), then the system may not specify college information for the candidate or the system may replace the candidate's specific college with something like "US university." Key-value pairs that are not abstracted 55 or removed in accordance with step 850 remain in the new

If a candidate applies for multiple job positions at an organization, then the system may create a new profile for the candidate for each of the job roles, as what is relevant for 60 one job role may not be relevant for another job role.

3.1 Identifying Relevant Keys and Abstraction Levels for Key-Value Pairs

FIGS. 9 and 10 illustrate two different methods for determining which keys in the candidate data are relevant

8

for a particular job role and, for keys that are relevant, determining at what level the key matters most (i.e., at the base level or at an abstracted level), FIG. 9 uses a neural network, and FIG. 10 uses data from "ideal candidates" for a job position.

Turning to FIG. 9, the system obtains full profiles for a set of training candidates, preferably comprising people from across a plurality of organizations (step 910). The training set includes both people who have never held the applicable job role and people who currently have or have previously had the applicable job role. The system divides the candidates in the training set into two groups: One group with people who have or have had the applicable job role, and one group with people who have not held the applicable job role (step 920). For each candidate in the set, the system inputs key-value pairs from the candidate's full profile (in the form of an input vector) into a neural network, along with a target variable indicating whether the candidate has (or has had) the job role. In one embodiment, the neural network is a recurring neural network (RNN).

For each of a plurality of keys in the candidate data, the system computes, using the neural network, how well actual values for the keys and abstractions of values for the keys predict the job role (step 940). The "abstracted values" may be preconfigured by a system administrator or may be determined automatically by clustering values for keys into groups, where a group encompasses multiple values. The system may test multiple abstraction levels for a key.

If an actual value for a key or an abstraction of a key's value is a good predictor for the job role, the system concludes that the key is relevant (step 950). The level (i.e., the base level or an abstracted level) that is the best predictor of the job role is the level that matters most for the key. For example, for the "undergraduate college" key, if "top 20% school" is a better predictor than a particular university value (e.g., "Stanford"), then "top 20% school," which is an abstracted value, is the level that matters most for that key. Conversely, if for the "skills" key, the value "java" is a better predictor for a job role than an abstracted value that encompasses a wider range of skills, then the base level (i.e., the actual value) for the key is the level that matters most for that key. If neither the actual values for a key, nor abstractions of values for a key, are good predictors, the system concludes that the key is not relevant for the job role (step 960).

FIG. 10 illustrates an alternate method for identifying the relevant keys and abstraction levels for a job role. The system identifies a plurality of "ideal candidates," across organizations, for a job role, and retrieves full profiles for the ideal candidates ("the ideal candidate data") (steps 1010, 1020). In one embodiment, the system obtains ideal candidate data using a calibrated job profile for the job role. Calibrated job profiles are described in U.S. patent application Ser. No. 16/121,401 which is incorporated by reference herein above.

For each of a plurality of keys in the ideal candidate data, the system determines if any actual values for the key and any abstractions of values for the key apply to a least a threshold percentage (e.g., 80%) of ideal candidates (step 1030). If no actual value or abstraction of values is applicable to at least a threshold number of ideal candidates, the system concludes that the key is not relevant for the job role (step 1040). If one or more actual values or abstracted values is applicable to at least a threshold number of ideal candidates, the system concludes that the key is relevant for the job role (step 1050). The lowest level applicable to a threshold percentage of ideal candidates is the level that matters most for the job role. For example, if both an

abstracted value for a key and a particular actual value for a key apply to at least a threshold percentage of ideal candidates, the base level (actual value) for the key is the level that matters most for that key.

4. General

The methods described herein are embodied in software and performed by a computer system (comprising one or more computing devices) executing the software. A person 10 skilled in the art would understand that a computer system has one or more memory units, disks, or other physical. computer-readable storage media for storing software instructions, as well as one or more processors for executing the software instructions.

As stated an example of a computer system for performing the methods described herein is set forth in U.S. patent application Ser. No. 16/121,401 (incorporated herein above). In addition to the software modules described in U.S. patent application Ser. No. 16/121,401, the system may 20 further comprises: have a software module for performing the methods described herein.

As will be understood by those familiar with the art, the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. 25 Accordingly, the above disclosure is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.

What is claimed is:

- A method for excluding biasing data from talent pro- 30 files, and generating and presenting updated talent profiles. the method comprising:
 - identifying one or more classes of bias influencing a profile reviewer;
 - obtaining a first talent profile, wherein the first talent 35 age bias. profile comprises an identifier of a person, and a plurality of key-value pairs characterizing aspects of
 - determining, from the plurality of key-value pairs, a first value that is indicative of influences over at least one of 40 the one or more classes of bias, wherein determining, from the plurality of key-value pairs, a first value that is indicative of influences over at least one of the one or more classes of bias further comprises determining, using a neural network model from the plurality of 45 key-value pairs, the first value that is indicative of influences over the at least one of the one or more classes of bias;
 - substituting the first value in the first talent profile using a class-neutral value to generate a second talent profile 50 that is a bias-neutral version of the first talent profile;
 - identifying a second plurality of key-value pairs in the first talent profile, wherein the second plurality of key-value pairs are remaining key-value pairs that are not substituted using the class-neutral value:
 - determining, whether one or more keys in the second plurality of key-value pairs are relevant to a job role; generating a third talent profile by:
 - for each of the one or more keys that is determined irrelevant to the job role, excluding the correspond- 60 ing key-value pair from the second talent profile;
 - for each of the one or more keys that is determined relevant to the job role, determining an abstracted value that is relevant to the job role and encompasses the value, and replacing the value in the corresponding key-value pair with the abstracted value in the second talent profile; and

presenting the third talent profile to the profile reviewer.

- 2. The method of claim 1. further comprising substituting the identifier associated with the person from the first talent profile to generate the second talent profile, wherein the identifier is at least one of a name of the person or an education institute.
- 3. The method of claim 1, wherein one or more parameters of the neural network are adjusted according to a training dataset, and wherein the neural network when executed is to predict a probability that a value of an input talent profile is indicative of influences over a particular class of bias, and to determine that the value is indicative of influences over the particular class of bias responsive to the value having at least a threshold probability value associated with the particular class.
- **4.** The method of claim **1**, wherein determining, from the plurality of key-value pairs, first value that is indicative of influences over at least one of the one or more classes of bias
 - obtaining the plurality of key-value pairs from the first talent profile;
 - for each of the plurality of key-value pairs, determining if a count of the value being associated with candidates subjecting to a particular class of bias is greater than a threshold percentage of all candidates in the training dataset: and
 - in response to the count of the value being associated with the candidates subjecting to the particular class of bias is greater than the threshold percentage of all candidates in the training dataset, concluding that the value is indicative of influences over the particular class.
- 5. The method of claim 1, wherein the one or more classes of bias comprises at least one of gender bias, racial bias, or
- 6. The method of claim 5, further comprising responsive to determining that the at least one class is the gender bias, using a survey of population dataset to identify male and female names; and
 - classifying each talent profile in a training dataset as one of female, male, or unknown based on a name in the talent profile.
- 7. The method of claim 5, further comprising responsive to determining that the at least one class is the racial bias, using a survey of population dataset to associate names with a race: and
 - classifying each talent profile in a training dataset with a corresponding race value based on a name in the talent profile.
- 8. The method of claim 5, further comprising responsive to determining that the at least one class is the age bias.
 - classifying each talent profile in a training dataset with an age range using one or more education landmark dates.
- 9. The method of claim 1, wherein substituting the first 55 value in the first talent profile comprises substituting the first value with an abstraction of the first value, and wherein the first value is a specific identification of an entity and the abstraction is a generic description of the entity that does not reveal a true identity of the entity.
 - 10. A computer system for excluding biasing data from talent profiles, and generating and presenting updated talent profiles, the computer system comprising:
 - a memory: and
 - one or more processors, communicatively coupled to the memory, to:
 - identify one or more classes of bias influencing a profile reviewer;

10

obtain a first talent profile, wherein the first talent profile comprises an identifier of a person, and a plurality of key-value pairs characterizing aspects of the person;

determine. from the plurality of key-value pairs, a first value that is indicative of influences over at least one of the one or more classes of bias, wherein determining, from the plurality of key-value pairs, a first value that is indicative of influences over at least one of the one or more classes of bias further comprises determining. using a neural network model from the plurality of key-value pairs, the first value that is indicative of influences over the at least one of the one or more classes of bias;

substitute the first value in the first talent profile using a class-neutral value to generate a second talent profile that is a bias-neutral version of the first talent profile;

identify a second plurality of key-value pairs in the first talent profile, wherein the second plurality of key-value pairs are remaining key-value pairs that are not substituted using the class-neutral value;

determine whether one or more keys in the second plurality of key-value pairs are relevant to a job role; generate a third talent profile by:

for each of the one or more keys that is determined ²⁵ irrelevant to the job role, excluding the corresponding key-value pair from the second talent profile:

for each of the one or more keys that is determined relevant to the job role, determining an abstracted value that is relevant to the job role and encompasses the value, and replacing the value in the corresponding key-value pair with an abstracted value in the second talent profile; and

present the third talent profile to the profile reviewer.

- 11. The computer system of claim 10, wherein the one or ³⁵ more processors are further to substitute the identifier associated with the person from the first talent profile to generate the second talent profile, wherein the identifier at least one of a name of the person or an education institute.
- 12. The computer system of claim 10, wherein one or 40 more parameters of the neural network are adjusted according to a training dataset, and wherein the neural network when executed is to predict a probability that a value of an input talent profile is indicative of influences over a particular class of bias, and to determine that the value is indicative 45 of influencing the particular class of bias responsive to the value having at least a threshold probability value associated with the particular class.
- 13. The computer system of claim 10, wherein to determine, from the plurality of key-value pairs, first value that is indicative of influences over at least one of the one or more classes of bias, the one or more processors are further to:

obtain the plurality of key-value pairs from the first talent profile;

for each of the plurality of key-value pairs, determine if 55 a count of the value being associated with candidates subjecting to a particular class of bias is greater than a threshold percentage of all candidates in the training dataset; and

in response to the count of the value being associated with 60 the candidates subjecting to the particular class of bias is greater than the threshold percentage of all candidates in the training dataset, conclude that the value is indicative of influences over the particular class.

12

14. The computer system of claim 10, wherein the one or more classes of bias comprises at least one of gender bias, racial bias, or age bias.

15. The computer system of claim 14, wherein

responsive to determining that the at least one class is the gender bias, the one or more processors are to:

use a survey of population dataset to identify male and female names; and

classify each talent profile in a training dataset as one of female, male, or unknown based on a name in the talent profile.

16. The computer system of claim 14, wherein

responsive to determining that the at least one class is the racial bias, the one or more processors are to:

use a survey of population dataset to associate names with a race; and

classify each talent profile in a training dataset with a corresponding race value based on a name in the talent profile.

17. The computer system of claim 14, wherein

responsive to determining that the at least one class is the age bias, the one or more processors are to classify each talent profile in a training dataset with an age range using one or more education landmark dates.

18. A non-transitory computer-readable medium stored therein a computer program, that, when executed by one or more processors of a computer system for excluding biasing data from talent profiles, and generating and presenting updated talent profiles, the one or more processors to:

identify one or more classes of bias influencing a profile reviewer;

obtain a first talent profile, wherein the first talent profile comprises an identifier of a person, and a plurality of key-value pairs characterizing aspects of the person;

determine, from the plurality of key-value pairs, a first value that is indicative of influences over at least one of the one or more classes of bias, wherein determining, from the plurality of key-value pairs, a first value that is indicative of influences over at least one of the one or more classes of bias further comprises determining, using a neural network model from the plurality of key-value pairs, the first value that is indicative of influences over the at least one of the one or more classes of bias; and

substitute the first value in the first talent profile using a class-neutral value to generate a second talent profile that is a bias-neutral version of the first talent profile;

identify a second plurality of key-value pairs in the first talent profile, wherein the second plurality of key-value pairs are remaining key-value pairs that are not substituted using the class-neutral value; determine whether one or more keys in the second plurality of key-value pairs are relevant to a job role;

generate a third talent profile by:

for each of the one or more keys that is determined irrelevant to the job role, excluding the corresponding key-value pair from the second talent profile;

for each of the one or more keys that is determined relevant to the job role, determining an abstracted value that is relevant to the job role and encompasses the value, and replacing the value in the corresponding key-value pair with an abstracted value in the second talent profile; and

present the third talent profile to the profile reviewer.

.